PRZESIEWANIE

Cechą główna przesiewania jest rozmiar i kształt ziarna Pojedyńcze ziarna ziarna niesferyczne

ziarno sferyczne

ziarno regularne

Nazwa	Opis	
Średnica arytmetyczna	średnia arytmetyczna trzech wymiarów (długość, szerokość, wyso- kość) ziarna	
Średnica geometryczna	średnia geometryczna trzech wymiarów ziarna (<i>abc</i>) ^{1/3}	
Średnica harmoniczna	średnia harmoniczna trzech wymiarów ziarna $\{1/3(1/a+1/b+1/c)\}^{-1}$	
Średnica sitowa	rozmiar kwadratowego oczka sita, przez które ziarno jeszcze przejdzie	
Średnica sitowa	średnia arytmetyczna rozmiaru sita, na którym zatrzymało się ziarno, i rozmiaru sąsiedniego sita, przez które ziarno przeszło	
Średnica powierzchniowa	średnica kuli mającej taką samą powierzchnię jak rozpatrywane ziarno	
Średnica objętościowa (średnica zastępcza <i>d_z</i>)	średnica kuli mającej taką samą objętość jak rozpatrywane ziarno	
Średnica projekcyjna (d_p)	średnica kuli mającej taką samą powierzchnię rzutu na płaszczyznę jak ziarno oglądane w kierunku prostopadłym do płaszczyzny stabilności ziarna	
Średnica hydrodynamiczna	średnica kuli stawiającej taki sam opór jak cząstka przy ruchu cieczy o takiej samej lepkości przy tej samej prędkości	
Średnica swobodnego opadania	średnica kuli mającej taką samą gęstość i taką samą prędkość opadania jak cząstka w cieczy o takiej samej gęstości i prędkości	
Średnica Stokesa	średnica swobodnego upadku w laminarnym obszarze opadania, Re _{cząstki} < 0,2	
Średnica objętościowo- -powierzchniowa	średnica kuli mającej taki sam stosunek powierzchni do objętości jak ziarno	
Średnica Fereta	średnia wartość odległości pomiędzy parą równoległych stycznych do rzutu ziarna na płaszczyznę	
Średnica Martina	średnia długość cięciwy rzutu ziarna na płaszczyznę	

Kształt nieregularnych ziarn (*a* – długość, *b* – szerokość, *c* – grubość) według Zingga (dane zaczerpnięte z pracy Laskowskiego i współ., 1977)

Kształt ziarn	Wskaźniki	
Kuliste	b/a > 2/3; c/b > 2/3	
Słupkowe	$b/a < 2/3; \ c/b < 2/3$	
Płaskie	b/a > 2/3; c/b < 2/3	
Płasko-słupkowe	$b/a < 2/3; \ c/b < 2/3$	

Wybrane współczynniki kształtu

Współczynnik kształtu	Opis	Formuła
Powierzchniowy λ_s	stosunek powierzchni ziarna do powierzchni obliczonej z średnicy nominalnej ziarna (d_n)	$\lambda_s = \pi d_s^2 / \pi d_n^2$ d_s – średnica kuli o takiej samej powierzchni jak ziarno
Objętościowy λ_{v}	stosunek objętości ziarna do jego objętości obliczonej z średnicy nominalnej	$\lambda_{v} = (\pi/6)d_{v}^{3}/(\pi/6)d_{n}^{2}$ $d_{v} - \text{średnica kuli o takiej}$ samej objętości jak ziarno
Sferyczność ¥	stosunek powierzchni kuli o takiej samej objętości jak ziarno do powierzchni cząstki	$\Psi = \left(\frac{d_v}{d_s} \right)^2$
Sferyczność Krumbeina, Ψ_k	stosunek objętości elipsoidy trójosiowej do objętości kuli opisującej tę elipsoidę	$\Psi_k = \{(\pi/6)abc/(\pi/6)a^3\}^{1/3}$
Sferyczność Schiela <i>Ψ</i> _S	oparta na stosunku średniego ziarna z analizy sitowej za pomocą sit z okrągłymi oczkami $(d_o = d_{o \ 0,5})$ do średniego ziarna z sitami o kwadratowych $(d_k = d_{k \ 0,5})$ oczkach $(k = d_o / d_k)$	$\Psi_{S} = (1 - \log k / \log \sqrt{2})$

Zbiór ziarn

Skład ziarnowy

Niektóre funkcje stosowane do linearyzacji krzywych rozkładu, zwłaszcza krzywych składu ziarnowego. *c* oznacza wartość liczbową cechy

Najczęściej stosowana nazwa funkcji	$\Sigma \lambda (\%)/100\% = (kumulowana zawartość (%)/100% frakcji dla dane-go c)$	Znaczenie <i>c</i> *
Rosina–Rammlera lub Weibulla	$1 - \exp[-(c/c^*)^s]$	wartość <i>c</i> , przy której Σλ = 0,632
Gatesa–Gaudina– Schumanna	$[c/c^*]^n$	maksymalna war- tość cechy <i>c</i>
Broadbenta–Callcotta	$1 - \exp[-(c/c^*)]/(1 - \exp(-1))$	maksymalna war- tość cechy <i>c</i>
Gaudina–Meloya	$1 - [1 - (c/c^*)]^n$	maksymalna war- tość cechy c
Log-probabilistyczna	erf [ln(c/c*)/σ], erf – funkcja błędu σ– standardowe odchylenie geometryczne	medialna wartość cechy <i>c</i>

Fractal dimension =1 Traditional dimension =1

a

Fractal dimension versus euclidean or traditional dimensions expressing lines of different nature

a) Sierpinski carpet first iteration

a) Sierpinski carpet second iteration

3 units

The Sierpinski carpet showing up to the second iteration order having fractal dimension of 1.8928 (after Hargrave et al., 1998)

a) Sierpinski carpet constructor

a) Sierpinski carpet first iteration

b) Sierpinski carpet generator

a) Sierpinski carpet second iteration

Fraktalny opis składu ziarnowego

Sierpinski carpet fractal approach (a) expresses an analogue for grinding product on mass bases (b) having a certain distribution curve (c)

$$\frac{M(R < d)}{M_t} = \left(\frac{d}{d_{\max}}\right)^{(3-D)}$$

M(R<d) is the cumulative mass of particles having size *R* smaller than a considered comparative sieve size *d*, *Mt* is the total mass of sample (for normalization), and d_{max} is the maximum screen size.

$D=\ln(N)/\ln(1/r)$

D is the fractal dimension, N = the total number of the unremoved squares usually constant for each iteration step by considering the new square to work on is similar to the generator step, in this case N = 8, and *r* = linear ratio of similarity between repeated shapes presented in two subsequent iterations, in this case r = 1/3.

Opis fraktalny składu ziarnowego = równanie Gatesa–Gaudina–Schumanna

 $\Sigma\lambda = [c/c^*]^n$

maksymalna wartość cechy c

Średni rozmiar zbioru ziarn arithmetic mean

element: fruit, particle, container, mass, etc. object: man, container, set, volume, etc.

Średni rozmiar zbioru ziarn

$$d_{xy} = \left(\frac{\sum_{i=1}^{n} Nd_{i}^{x}}{\sum_{i=1}^{n} Nd_{i}^{y}}\right)^{\frac{1}{(x-y)}}$$
$$d_{xy} = \left(\frac{\sum_{i=1}^{n} Nd_{i}^{y}}{\sum_{i=1}^{n} \frac{g_{i}}{d_{i}^{3-x}}}{\sum_{i=1}^{n} \frac{g_{i}}{d_{i}^{3-y}}}\right)^{\frac{1}{(x-y)}}$$

N = liczba ziarn

P.B. Kowalczuk

Mechanika przesiewania

P>T przesiewanie na płaskich sitach

 $P_x+G_x>T_x$ przesiewanie na sitach nachylonych $P_y>G_y$ przesiewanie z podrzutem

Fizyka przesiewania

 $P_x = P \cos (\alpha + \beta) = ma \cos (\alpha + \beta), \quad (4.4)$

$$G_x = G\sin\beta = mg\sin\beta, \qquad (4.5)$$

$$T_x = \mu_o \left(G_y - P_y \right) = \mu_o \left[mg \cos \beta - ma \sin \left(\alpha + \beta \right) \right], \qquad (4.6)$$

można otrzymać tzw. wskaźnik posuwu ziarna us

$$u_{s} = \frac{u_{o} \left[\cos \left(\alpha + \beta \right) + u_{o} \sin \left(\alpha + \beta \right) \right]}{u_{o} \cos \beta - \sin \beta} > 1, \qquad (4.7)$$

gdzie u_o jest dynamicznym wskaźnikiem przesiewacza, zdefiniowanym jako stosunek maksymalnego przyspieszenia sit do przyspieszenia ziemskiego

$$u_o = \frac{A\omega^2}{g} \,. \tag{4.8}$$

Za przyspieszenie sit *a* wstawiono przyspieszenie maksymalne, wynoszące dla drgań harmonicznych $a = A \omega^2$.

W równaniach (4.4)–(4.7):

A – amplituda drgań harmonicznych,

ω – prędkość kątowa,

 G_x – składowa styczna sił grawitacyjnych,

 P_x – składowa normalna sił bezwładności,

m – masa ziarna,

g – przyspieszenie ziemskie,

a – przyspieszenie posuwu,

 β – nachylenie sita w stosunku do poziomu,

 α – kierunek działania sił bezwładności, wynikających z drgań harmonicznych sita nachylonego do poziomu

Ruch ziarna z podrzutem

Gdy rozpatrujemy ruch ziarna z podrzutem (rys. 4.5), wtedy musi być spełniony warunek podany równaniem (4.3), czyli $P_y > G_y$. Po wstawieniu za P_y i G_y fizycznych wyrażeń określających te siły

$$P_{y} = P \sin (\alpha + \beta), \qquad (4.9)$$
$$G_{y} = G \cos \beta, \qquad (4.10)$$

można otrzymać wyrażenie na wskaźnik podrzutu u_p

$$u_p = \frac{A\omega^2 \sin(\alpha + \beta)}{g \cos \beta} \Longrightarrow \frac{A\omega^2 \sin(\Sigma)}{g \cos \beta} > 1, \qquad (4.11)$$

ponieważ G = mg, P = ma, zaś $a = A \omega^2$.

Kinetyka przesiewania

Zależności ogólne

$$v_{p\,i} = -d\lambda_i/dt = k_i\,\lambda_i,$$

v - prędkość przesiewania

$$\lambda_{i,t} = \alpha_i \exp(-k_i t)$$
 k - stała

Malewski, 1990

$$k_{si} = k_{0,5} \left[2 \left(1 - \frac{d_i}{d_t} \right) \right]^{\delta}$$

 $k_{0,5} = 3600 \ VBW \varphi s C d_s / Q_o$,

(Oznaczenia w książce "Podstawy mineralugii")

Wybrane przybliżone formuły wydajności przesiewania ciągłego

Autor formuły	Wzór	Źródło
Nawrocki	$Q = 900Fn^{0.5}sd_t\rho_u v_m C/Sb \text{ (Mg/h)}$	Banaszewski, 1990
Kluge	$Q = FQ_j W_g W_d SHM$ (Mg/h)	Banaszewski, 1990
Olewski	$Q = 2,23 \cdot 10^{-4} (100 - \varepsilon) d_t p_c \rho_u (Mg/h)$	Sztaba, 1993

Q – wydajność skuteczna (strumień masowy) nadawy przy danym uzysku.

Formuła Nawrockiego:

- n częstotliwość drgań, min⁻¹,
- s współczynnik prześwitu,
- d_t wymiar boku otworu kwadratowego oczka sita, m,
- ρ_u gęstość usypowa materiału, Mg/m³,
- v_m prędkość materiału na sicie, m/s,
- C współczynnik trudności przesiewania,
- S współczynnik skuteczności przesiewania,
- *b* współczynnik lepkości materiału.

Formuła Klugego:

- F powierzchnia sita,
- Q_i wydajność jednostkowa zależna od otworu sita i rodzaju przesiewanego materiału, t/(h·m²),
- W_g współczynnik zależny od procentowej zawartości w nadawie ziarn większych od wymiaru otworu sita,
- W_d współczynnik zależny od procentowej zawartości w nadawie ziarn mniejszych od połowy wymiaru otworu sita,
- *S* współczynnik zależny od żądanej sprawności przesiewania;
- H współczynnik zależny od rodzaju przesiewania (na sucho lub na mokro) i dla odpowiedniej wielkości otworów sita d_i ;
- M współczynnik uwzględniający liczbę pokładów sita w jednym rzeszocie, dla pierwszego pokładu M = 1, drugiego M = 0.9, trzeciego M = 0.75.

Współczynniki W_g , W_d oraz S odczytuje się z nomogramów, podanych np. w pracy Banaszewskiego, 1990.

Formuła Olewskiego:

- p_c pole powierzchni czynnej sita, m²,
- ε uzysk klasy drobnej,
- d_t wielkość otworu sita,
- ρ_u gęstość usypowa materiału.

Analiza sitowa

Normy dla przeróbki kopalin przewidują, że sita do analizy sitowej, czyli sita analityczne, mają oczka kwadratowe o wielkości otworów tworzących ciągi kolejnych wyrazów szeregu geometrycznego o module $\approx \sqrt[n]{10} = 1,259$ lub $\approx \sqrt[n]{10} = 1,122$. Są to odpowiednio szeregi R-10 i R-20 (Sztaba, 1993).

Rozmiar otworów sit analitycznych zalecanych przez polską normę PN-86/M-94001do analizy sitowej

Rozmiar oczka sita	Rozmiar oczka sita	Rozmiar oczka sita	Rozmiar oczka sita
mm	mm	mm	mm
Moduł ~1,12	Moduł ~1,12	Moduł ~1,12	Moduł ~1,12
Moduł ~1,26	Moduł~1,26 ↓ Moduł~1,26	Moduł ~1,26	Moduł ~1,26
	cd.	cd.	cd.
0,025	0,25	2,5	25
0,028	0,28	2,8	28
0,032	0,32	(3,0), 3,2	(30), 32
0,036	0,36	3,6	36
0,040	0,40	4,0	40
0,045	0,45	4,5	45
0,050	0,50	5,0	50
0,056	0,56	5,6	56
0,063	0,63	(6,0),6,3	(60),63
0,071, (0,075)	0,71	7,1	71
0,080	0,80	8,0	80
0,090	0,90	9,0	90
0,10	1,0	10,0	100
0,11	1,1, 1,2	11,2	112
0,12	(1,25)	12,0, 13,5	(120),125
0,14 (0,15)	1,4	14,0	140
0,16	1,6	16,0	160
0,18	1,8	18,0	180
0,20	2,0	20,0	200
0,22	2,2	22,0,(22,4)	

Podział przesiewaczy (wg Kelly'ego i Spottiswooda)

Sito łukowe (sieve bend)

Wet Sizing Screen

© **1999 - 2006 Derrick Corporation** 590 Duke Road • Buffalo, New York 14225 USA (716) 683-9010 • Fax: (716) 683-4991

Repulp Wet Sizing Screen

High Shear Screen

Six Belt Scalpers extracting organic material from the hydrocyclone overflow in a sugar beet installation (photos 2-4

